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• Opportunities and risks for using 
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• Games for modelling privacy risks

• Empirical evaluation of privacy 

mechanisms



Opportunities: Domain-specific private data

Healthcare
Researchers designed a deep learning model, 

to accurately detect diabetic retinopathy, a 

leading cause of blindness. By fine-tuning 

the model with private medical images, 

they were able to identify patients at risk 

with 90% accuracy.

Gulshan et al. “Development and Validation of a Deep Learning 

Algorithm for Detection of Diabetic Retinopathy in Retinal 

Fundus Photograph” JAMA 2016

Fraud Detection
By fine-tunning models with private 

transaction data, financial institutions can 

build robust fraud-detection systems that 

identify suspicious activities and protect 

customers’ financial assets.

Phua et al. “Minority report in fraud detection: classification of 

skewed data”

https://pubmed.ncbi.nlm.nih.gov/27898976/
https://pubmed.ncbi.nlm.nih.gov/27898976/
https://pubmed.ncbi.nlm.nih.gov/27898976/
https://dl.acm.org/doi/10.1145/1007730.1007738
https://dl.acm.org/doi/10.1145/1007730.1007738


Company-specific model:

Socrates is a company wide 

initiative focusing on AI at Scale

Opportunities: Domain-specific private data

We not only require big data, but also the relevant data in the 

right context.

Public model:

Socrates was a 

Greek philosopher



Inference threats against private data
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Membership Inference (MI)
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Attribute Inference (AI)
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Data Reconstruction (RC)
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Inference threats against any private data
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Games for modelling 

privacy risks

Joint work with: Ahmed Salem, Giovanni 

Cherubin, David Evans, Boris Köpf, Anshuman 

Suri, Shruti Tople, Santiago Zanella-Béguelin



How do we quantify inference threats?

Threat modelling: Is this model vulnerable to membership inference?

Trained model

 Which attacks are relevant?

 How is the training data constructed?

 How is the target datapoint selected?

 What can the adversary observe?

 How do we measure adversary success?



Game-based definitions

IND−CPA(KG, Enc, 𝒜)
𝑏 ∼ 0,1
𝑝𝑘, 𝑠𝑘 ← KG

𝑚0, 𝑚1 ← 𝒜(𝑝𝑘)

𝑐 ← Enc(𝑝𝑘,𝑚𝑏)
෨𝑏 ← 𝒜(𝑝𝑘, 𝑐)

MI(Train, 𝒟, 𝑛,𝒜)
𝑏 ∼ 0,1
𝑆 ∼ 𝒟𝑛−1

𝑧0, 𝑧1 ← 𝒜(𝑆)

𝜃 ← Train(𝑆 ∪ {𝑧𝑏})
෨𝑏 ← 𝒜(S, 𝜃)

Cryptography Machine Learning

Adv 𝒜 = 2 Pr ෨𝑏 = 𝑏 −
1

2

flip a fair coin

adversary guess

construct challenge

Advantage over random guess



Formalizing Membership Inference
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Formalizing Membership Inference

Train

Trained model

𝜃 ← 𝒯(𝑆 ∪ {𝑧𝑏})

Training data

∼ 𝒟𝑛−1

𝑆

∼ 𝒟 ∼ 𝒟𝑧0 𝑧1
𝑏 ∼ {0,1}

Overfitting, robustness, and malicious algorithms. Yeom et al. J. of Comp. Sec. 28 (2020) 35–70

https://doi.org/10.3233/JCS-191362
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Formalizing Membership Inference

Overfitting, robustness, and malicious algorithms. Yeom et al. J. of Comp. Sec. 28 (2020) 35–70

https://doi.org/10.3233/JCS-191362

MI (𝑇, 𝒟, 𝑛,𝒜)
𝑆 ∼ 𝒟𝑛−1

𝑧0, 𝑧1 ← 𝒜(𝑆)

𝑏 ∼ 0,1
𝜃 ← 𝑇(𝑆 ∪ {𝑧𝑏})
෨𝑏 ← 𝒜(𝑇, S, 𝜃,𝑛)

MI (𝑇, 𝒟, 𝑛,𝒜):
𝑆 ∼ 𝒟𝑛−1

𝑧0, 𝑧1 ∼ 𝒟
𝑏 ∼ 0,1
𝜃 ← 𝑇(𝑆 ∪ {𝑧𝑏})
෨𝑏 ← 𝒜(𝑇,𝒟, 𝑛, 𝜃,𝑧0)

https://doi.org/10.3233/JCS-191362


Differential Privacy

A training algorithm 𝒯 is 𝜀, 𝛿 -DP if for any adjacent datasets 

𝑆0, 𝑆1 and measurable set of models 𝑂

P 𝒯 𝑆0 ∈ 𝑂 ≤ 𝑒𝜀 P 𝒯 𝑆1 ∈ 𝑂 + 𝛿

DPD (𝒯,𝑛,𝒜):
𝑆, 𝑧0, 𝑧1 ← 𝒜(𝒯, 𝑛)

𝑏 ∼ 0,1
𝜃 ← 𝒯(𝑆 ∪ {𝑧𝑏})
෨𝑏 ← 𝒜(𝜃)

MI (𝒯, 𝒟, 𝑛,𝒜):
𝑆 ∼ 𝒟𝑛−1

𝑧0, 𝑧1 ∼ 𝒟
𝑏 ∼ 0,1
𝜃 ← 𝒯(𝑆 ∪ {𝑧𝑏})
෨𝑏 ← 𝒜(𝒯,𝒟, 𝑛, 𝜃, 𝑧0)

Sampled

Adversarially chosen

Theorem: If 𝒯 is 𝜀, 𝛿 -DP, then

AdvMI 𝒜 ≤ AdvDPD 𝒜 ≤
𝑒𝜀 − 1 + 2𝛿

𝑒𝜀 + 1

Investigating Membership Inference Attacks under Data Dependencies. Humphries et al. 

https://arxiv.org/abs/2010.12112

https://arxiv.org/abs/2010.12112


Systematizing Privacy Games

A. Salem, et al., "SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning" 

IEEE Symposium on Security and Privacy 2023.

https://www.computer.org/csdl/proceedings-article/sp/2023/933600a327/1NrbXIvJO3S


Relations between privacy risks

• Does DP mitigate AI 
(inferring an unknown sensitive 
attribute of a target record)? 
Yes, and we can quantify how much

• Does DP mitigate PI 
(e.g., inferring the proportion of 
records with an attribute value)? 
No

Games enable reasoning about 
relations between privacy risks



Games for new settings



Empirical evaluation of 
privacy mechanisms

Joint work with Santiago Zanella-Beguelin, 

Lukas Wutschitz, Shruti Tople, Ahmed Salem, 

Victor Rühle, Mohammad Naseri, Boris Köpf, 

Daniel Jones



Differential Privacy (DP)

A mechanism ℳ is (𝜀, 𝛿)-Differentially Private if for every pair of 

adjacent datasets 𝐷,𝐷′ and any set of outcomes 𝒮

ℙ ℳ 𝐷 𝜖 𝒮 ≤ 𝑒𝜀ℙ ℳ 𝐷′ 𝜖 𝒮 + 𝛿

How to achieve DP in practice?
 Compute sensitivity of the function i.e., max

𝐷,𝐷′
|ℳ 𝐷 − ℳ 𝐷′ |

 Add noise calibrated to the sensitivity

C. Dwork & A. Roth, “The Algorithmic Foundations of Differential Privacy"

https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf


Differentially-Private Stochastic Gradient Descent

Intuition: limit the contribution of any 

individual training point, and add 

calibrated noise during training

Implementations:
 Tensorflow: tensorflow/privacy

 Pytorch: Opacus

Limitations:
 Privacy vs. utility trade-off

 Well-suited for huge datasets, large batch sizes

 Computation is expensive

M. Abadi, et al., “Deep Learning with Differential Privacy" ACM Conference on Computer and Communications Security 2016.

https://github.com/tensorflow/privacy
https://opacus.ai/api/privacy_engine.html
https://arxiv.org/abs/1607.00133


What does DP-SGD guarantee? 

Membership inference: Given a model and a sample z, adversary wants to 

determine whether z was used to train the model

Membership Inference Advantage ∊ [0,1] = True Positive Rate – False Positive Rate

• ε=4 is often seen as 

reasonable, but only gives 

weak protection against the 

weakest of attacks

• Using a lower ε would harm 

utility too much

Example: ε=4 doesn’t rule out MI 

attacks that detect members 100% 

of the time, with only a 3.6% false 

positive rate

T. Humphries, et al., “Investigating Membership Inference Attacks under Data Dependencies" IEEE Computer Security Foundations Symposium 2023.

https://arxiv.org/abs/2010.12112


What does DP-SGD guarantee?

Analysis of DP-SGD assumes the adversary:

 can craft a worst-case dataset i.e., has full control over all gradients 

(except the order in which they’re seen)

 has access to each model update (may only be realistic in FL)

The DP Adversary is unrealistically powerful for many practical scenarios!



What does DP-SGD provide empirically? 

Membership inference: Given a model and a sample z, adversary wants to 

determine whether z was used to train the model

Membership Inference Advantage ∊ [0,1] = True Positive Rate – False Positive Rate

• Even when DP-SGD 

guarantees ε=4, the actual 

protection could be better 

• How can we measure this?



Potential lift  + Safety margin

Provable

Estimated from attack

within threat model

Threat model-specific, 

unknown

P
ri

va
cy

Utility

Gap between Provable and Empirical Privacy



How to empirically measure DP-SGD?



Empirical estimation of DP ε

 M. Jagielski, et al., “Auditing Differentially Private Machine Learning: How Private is Private SGD?”, June 2020

 M. Nasr, et al., “Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning”, January 2021

 F. Tramèr, et al., “Debugging Differential Privacy: A Case Study for Privacy Auditing”, February 2022

 S. Zanella-Béguelin, et al., “Bayesian Estimation of Differential Privacy”, June 2022

 F. Lu, et al., “A General Framework for Auditing Differentially Private Machine Learning”, October 2022

 M. Nasr, et al., “Tight Auditing of Differentially Private Machine Learning”, February 2023

 T. Steinke, et al., “Privacy Auditing with One (1) Training Run”, May 2023

 K. Pillutla, et al., “Unleashing the Power of Randomization in Auditing Differentially Private ML”, May 2023

https://arxiv.org/abs/2006.07709
https://arxiv.org/abs/2101.04535
https://arxiv.org/abs/2202.12219
https://arxiv.org/abs/2206.05199
https://arxiv.org/abs/2210.08643
https://arxiv.org/abs/2302.07956
https://arxiv.org/abs/2305.08846
https://arxiv.org/abs/2305.18447


Empirical estimation of DP ε

• Goal: estimate an empirical distribution of ε for a given 

• Approach: use membership inference attacks to obtain estimates 

for the lower bound on ε.

• Use cases:
• Provide meaningful privacy protection and improved utility

• Audit training pipeline to detect violations of DP (due to unexpected data correlations, 

implementation bugs, etc.)

• …



DP as Hypothesis Testing

𝛿

𝛿

e𝜀

e−𝜀

FNR

FPR

(𝜺, 𝜹)-DP ⟺ Attacks only possible in the shaded region  

Perfect privacy

P. Kairouz, et al., "The Composition Theorem for Differential Privacy" International Conference on Machine Learning 2015.

https://arxiv.org/abs/1311.0776


Empirical estimation of DP ε

• Challenge: how to obtain good approximations of the adversary’s 

False Positive Rate (FPR) and False Negative Rate (FNR)?

• Design space:
• How is the dataset chosen/created (e.g., average-case vs. worst-case)?

• How are the target points chosen/constructed (e.g., natural vs. “canaries”)?

• What type of attack to use (e.g., black-box vs. white-box)?

• What type of confidence intervals to use?

• How many models to train?



Bayesian estimation of DP ε

1. Select a specific membership inference attack

2. Repeat the attack to estimate the joint distribution of FPR, FNR

3. Integrate density of distribution over privacy regions to find a credible interval for 𝜀 @ given 𝛿
i.e., find two privacy regions whose difference covers 95% of the density of (FPR,FNR)

S. Zanella-Béguelin, et al., “Bayesian Estimation of Differential Privacy”, International Conference on Machine Learning 2023.

.

https://arxiv.org/abs/2206.05199


Bayesian estimation of DP ε

Attack confusion matrix: FN = 1, FP = 1, TP = 3, TN = 2

S. Zanella-Béguelin, et al., “Bayesian Estimation of Differential Privacy”, International Conference on Machine Learning 2023.

.

https://arxiv.org/abs/2206.05199


Bayesian estimation of DP ε

Attack confusion matrix: FN = 11, FP = 12, TP = 31, TN = 42

S. Zanella-Béguelin, et al., “Bayesian Estimation of Differential Privacy”, International Conference on Machine Learning 2023.

.

https://arxiv.org/abs/2206.05199


Bayesian estimation of DP ε

Attack confusion matrix: FN = 90, FP = 81, TP = 141, TN = 121

S. Zanella-Béguelin, et al., “Bayesian Estimation of Differential Privacy”, International Conference on Machine Learning 2023.

.

https://arxiv.org/abs/2206.05199


Bayesian estimation of DP ε

Attack confusion matrix: FN = 220, FP = 201, TP = 341, TN = 321

S. Zanella-Béguelin, et al., “Bayesian Estimation of Differential Privacy”, International Conference on Machine Learning 2023.

.

https://arxiv.org/abs/2206.05199


Bayesian estimation of DP ε

1. Select a specific membership inference attack

2. Repeat the attack to estimate the joint distribution of FPR, FNR

3. Integrate density of distribution over privacy regions to find a credible interval for 𝜀 @ given 𝛿
i.e., find two privacy regions whose difference covers 95% of the density of (FPR,FNR)

S. Zanella-Béguelin, et al., “Bayesian Estimation of Differential Privacy”, International Conference on Machine Learning 2023.

.

https://arxiv.org/abs/2206.05199


Privacy Auditing with One (1) Training Run

“Can we perform privacy auditing using 

a single run of the algorithm M?”

 Identify 𝑚 data points (i.e., training examples or “canaries”);

 Flip 𝑚 independent unbiased coins to decide which to include or exclude; 

 Run the algorithm on the randomly selected dataset;

 Based on the output, the auditor “guesses” whether each data point was 

included or excluded (or it can abstain);

 Obtain a lower bound on the privacy parameters from the fraction of guesses 

that were correct.

T. Steinke, M. Nasr, & M. Jagielski, “Privacy Auditing with One (1) Training Run”, arXiv:2305.08846, May 2023.

https://arxiv.org/abs/2305.08846


Privacy Auditing with One (1) Training Run

T. Steinke, M. Nasr, & M. Jagielski, “Privacy Auditing with One (1) Training Run” , arXiv:2305.08846, May 2023.

https://arxiv.org/abs/2305.08846


Empirical estimation of DP ε

• Challenge: how to obtain good approximations of the adversary’s 

False Positive Rate (FPR) and False Negative Rate (FNR)?

• Design space:
• How is the dataset chosen/created (e.g., average-case vs. worst-case)?

• How are the target points chosen/constructed (e.g., natural vs. “canaries”)?

• What type of attack to use (e.g., black-box vs. white-box)?

• What type of confidence intervals to use?

• How many models to train?



Putting it all 

together



A new privacy review process

Game-based

RepresentationScenario
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Specific 

Attacks

Privacy
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ML 

Developer



Summary

Information leakage is a concern when training on 
non-public data.

Privacy games

 a systematic approach for describing inference risks 
in ML.

 enable comparisons between risks using 
established and implied relationships.  

Empirical estimates

 provide lower bounds for ε and can be used to audit
privacy mechanisms.

 can be computed from even a single training run.



© Copyright Microsoft Corporation. All rights reserved. 

Thank you

andrew.paverd@microsoft.com



MICO: Microsoft ML Membership Inference Competition

https://github.com/microsoft/MICO

https://github.com/microsoft/MICO
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