4 July 2023 - Security for all in an AI enabled society

Cyber Hygiene in AI-enabled domestic life: A smart heating case study experiment

Professor George Loukas

University of Greenwich

From Human-as-a-Problem to Human-as-a-solution in cyber security – "old-school (social media, web, email cyber threats)

azon.co.uk order 🛛 🗶 Amazon S	ign In 🛛 🗙 🗖						
ec2-52-27-204-20.us-west-2.compute.amazonaws.com/login.html						â	w
	amaz	CON.co.uk					
	Sign in						
E-mail (phone for mobile accounts)							
	selina.carlysle@gmail.com						
	Password	Forgot Password					
	Sig	in in					
	Keep me signed in. D	etails					
	New to A	Amazon?					
	Create your A	mazon account					
	Conditions of Use Privacy Notice © 1996-2017, Amazon	Help Cookies & Internet Adve com, Inc. or its affiliates	rtising				

Attack A1 A2 A3 A4 A5 A6 A7 B5 B6 B7 P1 P2 P3 **B1 B2 B3** Attack Attack 1.11.11.11.21.21.2 $\mathbf{2.1}$ $\mathbf{2.1}$ $\mathbf{2.1}$ $\mathbf{2.2}$ $\mathbf{2.2}$ $\mathbf{2.2}$ 3.13.13.13.23.23.2_ AntiVirus Platform Browsers Attack A1 A2 A3 A4 A5 A6 A7 Attack P1 P3 Attack **B1 B2 B3 B4 B5 B6 B7** 2.1A2.1A 2.1AX 4.14.1 4.1X -4.24.2X 4.25.15.15.1-X 5.25.25.2X 2.23.1 4.2 45 5.2

Commercial cyber security products Vs. humans

Browsers

AntiVirus

2 in 3 get it wight

Heartfield, R. and Loukas, G. (2018) Detecting semantic social engineering attacks with the weakest link. Computers & Security, Elsevier.

Platform

"It's playing up again"

There are many reasons to want it to be.

- People feeling more in control of their own devices and systems
- Extra layer of defence especially for new and unknown threats to AI
- People will not trust AI blindly

In CHAI, we explore this from four angles

Optimisation of AI measures for the service provider

The first two are linked directly

Cyber hygiene for AI users (+ Training)

Perception (What to notice) Detection (How to diagnose) Response (How to act) Al transparency for non-experts

Insights from literature

Cyber hygiene

Cyber hygiene clearly leads to online cyber safety, encompassing what we think, how we think, and what we do online

Vishwanath, A., Neo, L.S., Goh, P., Lee, S., Khader, M., Ong, G. and Chin, J., 2020. Cyber hygiene: The concept, its measure, and its initial tests. Decision Support Systems, 128.

In cybersecurity, humans are considered a problem to be controlled. this robs organisations of their human agents' ability to make a contribution to cyber security.

Zimmermann, V. and Renaud, K., 2019. Moving from a 'human-as-problem" to a 'human-as-solution" cybersecurity mindset. International Journal of Human-Computer Studies, 131, pp.169-187.

Al transparency for non-experts

Gaining even limited knowledge of the inner workings of AI approaches is important for non-experts to develop trust.

Ayobi, A., Stawarz, K., Katz, D., Marshall, P., Yamagata, T., Santos-Rodríguez, R., Flach, P. and O'Kane, A.A., 2021. Machine learning explanations as boundary objects: how AI researchers explain and non-experts perceive machine learning.

Al risk communication suffers from disconnect between practitioners' and researchers' mental models of threats.

Bieringer, L., Grosse, K., Backes, M., Biggio, B. and Krombholz, K., 2022. Industrial practitioners' mental models of adversarial machine learning. In SOUPS 2022.

Explainable AI can help secure human-interactive robots

Roque, A. and Damodaran, S.K., 2022. Explainable AI for Security of Human-Interactive Robots. International Journal of Human–Computer Interaction, 38(18-20), pp.1789-1807.

Existing Cyber Hygiene and AI-enabled smart homes

Analysed applicability of 105 IoT security recommendations provided by NCSC, ENISA, etc. in terms of **applicability to prevention**, **perception**, **detection** and **response for AI-IoT**, **population** (expertise required), **intervention** (time required), and **scientific support**.

Substantial scientific evidence only 5 (all preventive and only indirectly useful)

PR-1: Turn off service when not needed PR-2: Change all default passwords or PINs PR-3: Use different passwords for different systems PR-4: Do not use passwords that are based on personal information that can be easily accessed or guessed PR-5: Do not use passwords that can be found in any dictionary of any language

A smart heating case study (AI-controlled radiator valve)

Aiming for simplest possible scenario to explain to a non-expert:

Schedule learning for **radiator valve setpoint Vs. price** at different times of the day.

Bayesian linear regression

Separate model for each of five profiles (mornings, weekdays/weekends, evenings, nights)

https://github.com/chai-project

AI Transparency measures in Squid application (1/2)

Aim: To provide more context on AI decisions than is usually available to the users, so as to help them notice AI misbehaviour

Example:

"The system set the target temperature to **11 C** because the current price is **8.65 p/kWh** and the active profile is **Nights** where the AI believes your price sensitivity is **Very high** and your preferred temperature (if energy were free) is **16.23 C**."

Log of notifications

GREENWICH

AI Transparency measures in Squid application (2/2)

Taxonomy of attacks on AI-enabled smart homes

Attacks in CHAI experiment

Focused on integrity attacks because they leave physical and digital traces observable by non-experts

Attacks in CHAI experiment (1/3)

Simple poisoning to modify
price sensitivity or preferred
temp at price 0.
Method: Unauthorised
setpoint injections

1/4/2022	25/4/2	022	System 🗌 User 🎽
Date	Time	Category	Description
5/4/2022	08:20	User	You set the target temperature to 7 C (override mode is now active).
5/4/2022	08:21	User	You set the target temperature to 21°C (override mode is now active).
5/4/2022	08:22	User	You set the target temperature to 7°C (override mode is now active).
5/4/2022	08:23	User	You set the target temperature to 21°C (override mode is now active).
5/4/2022	08:24	User	You set the target temperature to 7°C (override mode is now active).
5/4/2022	08:25	User	You set the target temperature to 21°C (override mode is now active).
5/4/2022	08:26	User	You set the target temperature to 7°C (override mode is now active).
5/4/2022	08:27	User	You set the target temperature to 21 C (override mode is now active).
5/4/2022	08:28	User	You set the target temperature to 7°C (override mode is now active).
5/4/2022	08:29	User	You set the target temperature to 21°C (override mode is now active).
5/4/2022	08:30	User	You set the target temperature to 7°C (override mode is now active).
			Rows per page: 25 26-50 of 378 < >

Attacks in CHAI experiment (2/3)

Attacks in CHAI experiment (1/3)

Cyber hygiene for perception, detection and response A simple diagnostic graph method

Truth table of observable indicators -> Binary decision diagram for non-experts

		Diagnostics (persistent facts)				Perception that trigge	Perception (temporary observations that trigger suspicion)			
		D1	D2	D3	D4	P1	P2	Р3		
	Simple poisoning	0	0	0	1	1	1	1		
	Input manipulation	1	1	0	0	0	0	0		
	Stealthy poisoning	1	0	0	1	1	1	1		
	Normal rapid	1	0	1	1	1	1	1		
	setpoint changes									
D1: all user entries are recognised D2: dramatic price change D3: several recent user entries D4: significant preferred temperature at price 0 change P1: frequent buzz P2: room too warm/cold P3: unusual price sensitivity										

1 manipulation

Cyber hygiene for perception, detection and response Diagnostic graph UI and indicative content

You may have detected an Al Poisoning Attack

It seems that a number of temperature changes have been entered into the system over a short period of time

These entries have become part of your current profile. Squid is heating the radiator according to this new data

WHAT TO DO NEXT

- Look at the problematic log description and identify which profile has been breached. This needs to be reset
 Go to Profiles Select the name of the
 - Go to *Profiles*. Select the name of the breached profile from the top left menu and click on the *Reset this Profile* button on the top right-hand side

Cyber hygiene for perception, detection and response **Experimental setup**

Schedule:

Squid usage data

Diagnostic tool usage data

Weekly interviews with each household

BOILER 19 participants from 10 households INTERNET ACCESS POINT Training on Squid SMART 0 WI-FI SIGNAL THERMOSTAT **RADIO SIGNAL** 1 month of familiarisation 2 I° 11 20' Training on one attack SMART RADIATOR 1 month of attacks (2 x 3 attacks each) VALVES Data collection: RELAY ON MAINS Reporting diary for each incident suspected

Cyber hygiene for perception, detection and response Training

1 hour session including slides and use of the diagnostic tool on the Simple poisoning attack. No training on the AI transparency features or other attacks

Perception

W

be

Detection and response

× -								
\sim 9	Troubleshooting your Squid app. Do you observe any of these? Any first observations of yours can help namow down what may have happened. Tick as many as you observed							
5 1 1 1 1								
SMART ENERGY			Resp	ponses				
		Yes	No	Do not know				
	I have heard the radiator valve activating very frequently or very infrequently.	0	0	•				
elcome to the troubleshooting tool for diagnosing possible c	The target temperature shown on the app does not seem to have changed recently. The target temperature on the app has changed many times in the last half-hour.	0	0	•				
asked what you observed that made you suspicious of a cy		0	0	•				
can do about it.	I noticed a long delay between the heating being requested via a change in target temperature and the radiator valve actually activating.	0	0	•				
	The Al logs do not appear to be correct.	0	0	•				
	Cannot hear any sound from the radiator valve when the heating is required.	0	0	•				
	The radiator/room feels too warm or too cold to what you would normally expect.	0	0	•				

Cyber hygiene for perception, detection and response Experimental results 1 – Human as an AI threat sensor

Response

Also, no obvious correlation between level of engagement (number of interactions) and performance as human sensors

* True negative is a day where non-attack occurred and no attack was perceived

Cyber hygiene for perception, detection and response Experimental results 3 – diagnostic tool

Model poisoning

with deleted logs

Initial insights

Existing cyber hygiene for AI-IoT is only preventive and not AI-specific.

We developed a domain-specific example set of perception, detection and response guidance, supported by partial training.

Perception accuracy was high (f1 score 0.86)

<u>Detection worked well only for the simple attack we had already trained</u> the participants. Much less so for the rest.

No correlation between number of interactions and human sensor performance and next step

Test these initial insights quantitatively in lab-based experiment

Compare different AI explainability approaches

Assess practicality on different AI application areas

Thank you

