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The Oracle Problem

Testing a Black-Box System Requires

▶ Many test cases (inputs)

▶ Their ground-truth (outputs)

“Exhaustive” Testing Would Require

▶ The presence of an oracle

▶ That can gives us the ground-truth

▶ For any possible input

A Safety Paradox

▶ If such oracle exists, we do not need the black box system!

▶ This talk: two ML-specific variants of this paradox
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Back to the Basics: The Data Scientist’s View

ML “Ingredients”

▶ A (possibly large) dataset of examples

▶ A ML model and an algorithm to train it
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Back to the Basics: Empirical Risk Minimisation

What’s The Requirement?

▶ Minimise the empirical loss 1
N

∑N
i=1 L(f (xi ), yi )

▶ That is, mimic the training set in some statistical sense
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The Requirements Paradox

No Formal Requirements in ML

▶ Minimise the loss function

▶ Perform “well” on test set

▶ No constraints on OOD behaviour

A ML Safety Paradox (1)

▶ If we have a full set of requirements we do not need ML at all

▶ I.e., just use the oracle
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Popular Safety Requirements

Research Challenge

▶ Empirical risk minimisation is not strong enough

▶ We need to augment it with additional requirements

Popular Safety Properties

▶ Deterministic: robustness*, monotonicity, equivalence,
stability

▶ Probabilistic: robustness*, fairness

▶ System-Level: privacy-preserving ML, absence of backdoors

A Property of ML Safety Properties (1)

▶ We only tell the ML system what not to do
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NLP Safety Properties

A Few Crucial Differences
▶ NLP inputs (tokens) are discrete not continuous

▶ Rich tradition of linguistic analysis, often grounded in logic

▶ Recent successes suggest the presence of shallow reasoning

7 / 18



Montague Semantic Properties

writer
(W)

Canadian
(C)

dist(embm(Canadian writer), c) ≤ dist(c, w)

w = embm(writer)

f = embm(skilled)

c = embm(Canadian)

dist(embm(Canadian writer), w) ≤ dist(c, w)

dist(W ∩ C, C) ≤ dist(C, W)

dist(W ∩ C, W) ≤ dist(C, W)

Compositional intersectivity test

Embedding-Denotation Analogy

dist(embm(skilled writer), f) ≤ dist(embm(skilled writer), w) ∆φ(W) ≤ dist(φ(W), W)

Compositional non-subsectivity test

Em,L

Em,L

skilled (φ)

Contribution: formal translation from sets to vectors
▶ Left: ML models map sentences to points in a high-dim space

▶ Right: only some adjectives have set-intersective semantics

▶ in Carvalho et al., Montague semantics and modifier
consistency measurement in neural language models, 2023
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Metamorphic Safety Properties

A Property of ML Safety Properties (2)

▶ They are independent from the ground truth

▶ They establish behavioural constraints across inputs

▶ They measures internal consistency rather than correctness

▶ They are metamorphic properties

Robustness-like Properties

▶ A “noise” perturbation T

▶ Output equivalence relation P

▶ It must hold for every input x

x

x′

y

y′

f

f

T P

Research Question

▶ Can we encode high-level linguistic properties this way?
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NLP Metamorphic Properties

Pairwise systematicity metamorphic relations

Input:

x1 = Light, cute and forgettable.

x2 = A masterpiece four years in the making.

x′1 = Thank you. Light, cute and forgettable.

x′2 = Thank you. A masterpiece four years in the making.

T : concatenate the text Thank you. at the beginning of the input.

P: spos
(
f (x1)

)
> spos

(
f (x2)

)
⇐⇒ spos

(
f (x′1)

)
> spos

(
f (x′2)

)
Empirical results

▶ 112M+ relations from a dataset with 11K+ unlabelled entries!

▶ RoBERTa exhibits from 5% to 10% violations depending on T

▶ in Manino et al., Systematicity, Compositionality and
Transitivity [. . . ]: a Metamorphic Testing Perspective, 2022

10 / 18



The Equivalence Paradox

NNs have High Redundancy

▶ Opportunity for compression

▶ Pruning, quantisation, distillation

▶ Different arch. similar behaviour

A ML Safety Paradox (2)

▶ Inference with the original NN (the oracle!) is expensive

▶ The compressed network may introduce unwanted behaviour
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Quantisation and NN Equivalence

Number of bits

Safety Prop. 6 7 8 9 10 11 12 13 28 29 30 31 32

Set.
R40 S S F S S S S S . . . S S S S S
R50 S S F F F F F F . . . F F F F S

Vers.

R20 S F S S S S S S . . . S S S S S
R30 S F S S S S S S . . . S S S S S
R40 S F S F F F S S . . . S S S S S
R50 S F F F F F F F . . . F F F F F

Virg.

R20 S F S S S S S S . . . S S S S S
R30 S F S S S S S S . . . S S S S S
R40 S F S S F S S S . . . S S S S S
R50 S F F F F F F F . . . F F F F F

Table: Effects of quantization on the safety of a NN trained on Iris data.

Effects of Quantisation

▶ Even if the accuracy does not drop, the behaviour may change
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CEG4N: Counterexample-Guided NN Quantisation

▶ in Batista et al.,
FoMLAS 2022

Quantisation

▶ Genetic algorithm

▶ Minimise bits

▶ Test equivalence

Verification
▶ Verify equivalence

▶ If not, generate
counterexample

▶ Augment testset

▶ Repeat

Start

Bits Search Module

Abstractions Module

Verifier Module

Success Failure

• A neural network f ;

• A set of counterexamples

• A set of properties;

• Search Module parameters;

• Verifier Module parameters;

Bits sequence N is found.

Property Ψ does not
hold. Counterexample
xCE is added to the

counterexamples set HCE

Property Ψ holds

Timeout,
Out of

memory, etc.

Unable to
find bits

sequence N .
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Private Inference for Neural Networks

Client

“bridge”

Server

Inference on Encrypted Data is Hard

▶ The encrypted computation should not leak information

▶ The decrypted result should be identical to non-private one

▶ Encryption primitive only support + and * efficiently

▶ The whole NN needs to be converted to a large polynomial!

▶ Can we ensure that the converted NN is equivalent?
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Certified Private Inference on Neural Networks via LiGAR

Polynomial Approx.

▶ Replace all
activations

▶ Keep polynomial
degree small

▶ Keep error small
xmin 0 xmax

0

xmax ReLU(x)

Poly5(x)

LiGAR: Lipschitz-Guided Abstraction Refinement

▶ Compute xmin, xmax of each activation potential

▶ Compute Lipschitz constant of each error term

▶ Compute the polynomial degrees that minimise the error

▶ Tighten the abstraction bounds and repeat until convergence

▶ in Manino et al., FoMLAS 2023
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Pruning and NN Equivalence

Effects of Pruning

▶ In the same way as quantisation, the behaviour may change

▶ Can we keep certified error bounds on the pruned network?

▶ Is it possible to keep them relatively tight?
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Towards Global Abstractions with Local Reconstruction

Pruning is Merging

▶ Merge neurons
with similar W

▶ By taking the
max/min of
their weights
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Our GINNACER Algorithm

▶ Do not merge if the activation state changes at the centroid

▶ The upper and lower bounds are ReLU NNs themselves!

▶ Orders of magnitude tighter than other global abstractions

▶ Comparable tightness with SOTA local abstractions

▶ in Manino et al., Neural Network Journal, 2023
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Summary

Requirements Paradox

▶ Formalise as many safety properties as possible

▶ Our Research: metamorphic definition of linguistic properties

Equivalence Paradox

▶ Compressed NN may exhibit unwanted behaviour

▶ Our Research: NNs that are equivalent by design

My Collaborators

▶ João Batista, Iury Bessa, Danilo Carvalho, Lucas Cordeiro,
Eddie de Lima Filho, André Freitas, Bernardo Magri, Mustafa
Mustafa, Julia Rozanova, Xidan Song

Any Questions?
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