A Tale of Two Oracles: Defining and Verifying when AI Systems are Safe

Edoardo Manino

University of Manchester (UK) This work is funded by the EPSRC grant EP/T026995/1 entitled "EnnCore: End-to-End Conceptual Guarding of Neural Architectures" under *Security for all in an AI enabled society*

The University of Manchester

The Oracle Problem

Testing a Black-Box System Requires

- Many test cases (inputs)
- Their ground-truth (outputs)

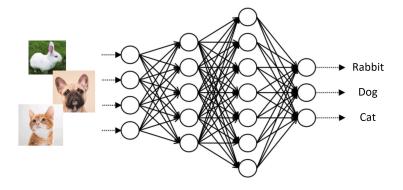
"Exhaustive" Testing Would Require

- The presence of an oracle
- That can gives us the ground-truth
- For any possible input

A Safety Paradox

- If such oracle exists, we do not need the black box system!
- This talk: two ML-specific variants of this paradox

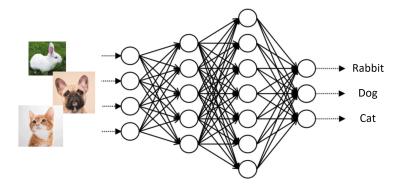
Back to the Basics: The Data Scientist's View



ML "Ingredients"

- A (possibly large) dataset of examples
- A ML model and an algorithm to train it

Back to the Basics: Empirical Risk Minimisation



What's The Requirement?

- Minimise the empirical loss $\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i)$
- That is, mimic the training set in some statistical sense

The Requirements Paradox

No Formal Requirements in ML

- Minimise the loss function
- Perform "well" on test set
- No constraints on OOD behaviour

A ML Safety Paradox (1)

- If we have a full set of requirements we do not need ML at all
- ▶ I.e., just use the oracle

Popular Safety Requirements

Research Challenge

- Empirical risk minimisation is not strong enough
- We need to augment it with additional requirements

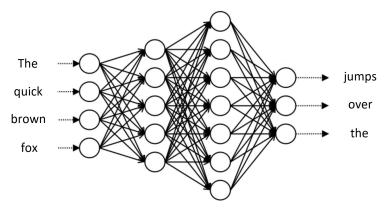
Popular Safety Properties

- Deterministic: robustness*, monotonicity, equivalence, stability
- Probabilistic: robustness*, fairness
- System-Level: privacy-preserving ML, absence of backdoors

A Property of ML Safety Properties (1)

We only tell the ML system what not to do

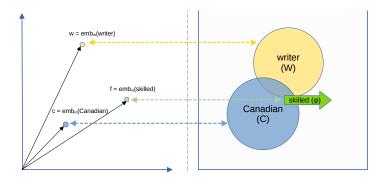
NLP Safety Properties



A Few Crucial Differences

- NLP inputs (tokens) are discrete not continuous
- Rich tradition of linguistic analysis, often grounded in logic
- Recent successes suggest the presence of shallow reasoning

Montague Semantic Properties



Contribution: formal translation from sets to vectors

- Left: ML models map sentences to points in a high-dim space
- Right: only some adjectives have set-intersective semantics
- in Carvalho et al., Montague semantics and modifier consistency measurement in neural language models, 2023

Metamorphic Safety Properties

A Property of ML Safety Properties (2)

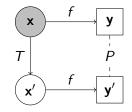
- They are independent from the ground truth
- They establish behavioural constraints across inputs
- They measures internal consistency rather than correctness
- They are metamorphic properties

Robustness-like Properties

- ► A "noise" perturbation T
- Output equivalence relation P
- It must hold for every input x

Research Question

Can we encode high-level linguistic properties this way?



イロト 不得 トイヨト イヨト

NLP Metamorphic Properties

Pairwise systematicity metamorphic relations											
	$\mathbf{x}_1 =$	Light, cute and forgettable.									
Input:	$\mathbf{x}_2 =$	A masterpiece four years in the making.									
	$\mathbf{x}_1' =$	Thank you.	Light, cute and forgettable.								
	$\mathbf{x}_{2}^{\prime} =$	Thank you.	A masterpiece four years in the making.								
<i>T</i> :	conca	concatenate the text Thank you. at the beginning of the input.									
<i>P</i> :	Spo	$s_{pos}(f(\mathbf{x}_1)) > s_{pos}(\overline{f(\mathbf{x}_2))} \iff s_{pos}(f(\mathbf{x}_1')) > s_{pos}(f(\mathbf{x}_2'))$									

Empirical results

- 112M+ relations from a dataset with 11K+ unlabelled entries!
- RoBERTa exhibits from 5% to 10% violations depending on T
- in Manino et al., Systematicity, Compositionality and Transitivity [...]: a Metamorphic Testing Perspective, 2022

The Equivalence Paradox

NNs have High Redundancy

- Opportunity for compression
- Pruning, quantisation, distillation
- Different arch. similar behaviour

A ML Safety Paradox (2)

- Inference with the original NN (the oracle!) is expensive
- > The compressed network may introduce unwanted behaviour

Quantisation and NN Equivalence

		Number of bits													
Safety Prop.		6	7	8	9	10	11	12	13		28	29	30	31	32
Set.	R ₄₀	S	S	F	S	S	S	S	S		S	S	S	S	S
	R ₅₀	S	S	F	F	F	F	F	F		F	F	F	F	S
Vers.	R ₂₀	S	F	S	S	S	S	S	S		S	S	S	S	S
	R ₃₀	S	F	S	S	S	S	S	S		S	S	S	S	S
	R ₄₀	S	F	S	F	F	F	S	S		S	S	S	S	S
	R ₅₀	S	F	F	F	F	F	F	F		F	F	F	F	F
Virg.	R ₂₀	S	F	S	S	S	S	S	S		S	S	S	S	S
	R ₃₀	S	F	S	S	S	S	S	S		S	S	S	S	S
	R ₄₀	S	F	S	S	F	S	S	S		S	S	S	S	S
	R ₅₀	S	F	F	F	F	F	F	F		F	F	F	F	F

Table: Effects of quantization on the safety of a NN trained on Iris data.

Effects of Quantisation

Even if the accuracy does not drop, the behaviour may change

CEG4N: Counterexample-Guided NN Quantisation

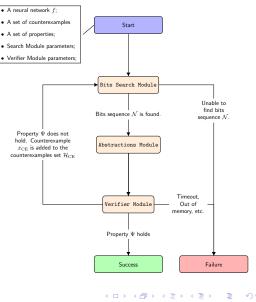
 in Batista et al., FoMLAS 2022

Quantisation

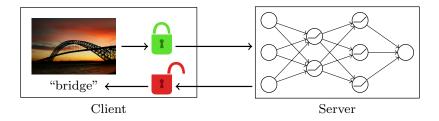
- Genetic algorithm
- Minimise bits
- Test equivalence

Verification

- Verify equivalence
- If not, generate counterexample
- Augment testset
- Repeat



Private Inference for Neural Networks



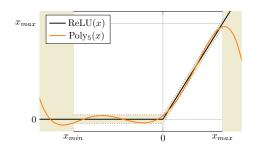
Inference on Encrypted Data is Hard

- The encrypted computation should not leak information
- The decrypted result should be identical to non-private one
- Encryption primitive only support + and * efficiently
- The whole NN needs to be converted to a large polynomial!
- Can we ensure that the converted NN is equivalent?

Certified Private Inference on Neural Networks via LiGAR

Polynomial Approx.

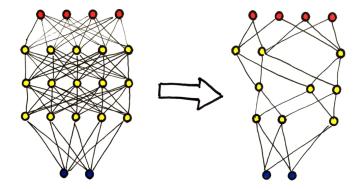
- Replace all activations
- Keep polynomial degree small
- Keep error small



LiGAR: Lipschitz-Guided Abstraction Refinement

- Compute x_{min}, x_{max} of each activation potential
- Compute Lipschitz constant of each error term
- Compute the polynomial degrees that minimise the error
- Tighten the abstraction bounds and repeat until convergence
- ▶ in Manino et al., FoMLAS 2023

Pruning and NN Equivalence



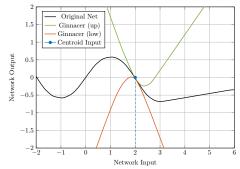
Effects of Pruning

- In the same way as quantisation, the behaviour may change
- Can we keep certified error bounds on the pruned network?
- Is it possible to keep them relatively tight?

Towards Global Abstractions with Local Reconstruction

Pruning is Merging

- Merge neurons with similar W
- By taking the max/min of their weights



Our GINNACER Algorithm

- Do not merge if the activation state changes at the centroid
- The upper and lower bounds are ReLU NNs themselves!
- Orders of magnitude tighter than other global abstractions
- Comparable tightness with SOTA local abstractions
- ▶ in Manino et al., Neural Network Journal, 2023

Summary

Requirements Paradox

- Formalise as many safety properties as possible
- Our Research: metamorphic definition of linguistic properties

Equivalence Paradox

- Compressed NN may exhibit unwanted behaviour
- Our Research: NNs that are equivalent by design

My Collaborators

 João Batista, Iury Bessa, Danilo Carvalho, Lucas Cordeiro, Eddie de Lima Filho, André Freitas, Bernardo Magri, Mustafa Mustafa, Julia Rozanova, Xidan Song

Any Questions?