

EPSRC Update

Steph Williams, Senior Portfolio Manager, EPSRC Digital Security and Resilience theme stephanie.williams@epsrc.ukri.org

Digital Security & Resilience

EPSRC has established a 'Digital Security & Resilience' (DS&R) theme to put a spotlight on digital technologies relevant to the security, defence, and resilience of the UK.

The research supported will aim to create a more secure and resilient digital society, that is robust and prepared to withstand shocks and challenges in an increasingly interconnected digital world.

Digital Security & Resilience

Broadly, the Digital Security & Resilience theme's investments and activities fall within the following areas:

- **1. Mitigating risk** research to embed security and resilience within digital technologies.
- **2. Creating opportunities** research into the development of digital technologies and national capabilities that improve the security, defence and resilience of the UK, its organisations, systems, infrastructure and society.
- **3. Shaping the future** through collaboration and thought leadership, promote safe adoption of digital technologies and maximise impact on the UK economy and society.

Digital Security and Resilience

Cybersecurity

Cybersecurity research projects aligned to NCSC Research Institutes

Digital Security by Design ISCF

Securing Digital Technology at the Periphery SPF (SDTaP) and PETRAS

Phase 3 of Centre for Secure Information Technologies IKC (CSIT)

4 Cybersecurity-related CDTs

New EPSRC cybersecurity ecosystem investment

Digital Twinning

EPSRC Hub for Applied Research in Digital Twinning for Decarbonising Transport

UKRI Digital Twinning for Energy Grid Operation and Resilience

UKRI Research Community Building and Thought Leadership in Digital Twinning

EPSRC Core Research in Digital Twinning, with co-funding

Digital Resilience

Digital Security, Identity, Privacy & Trust

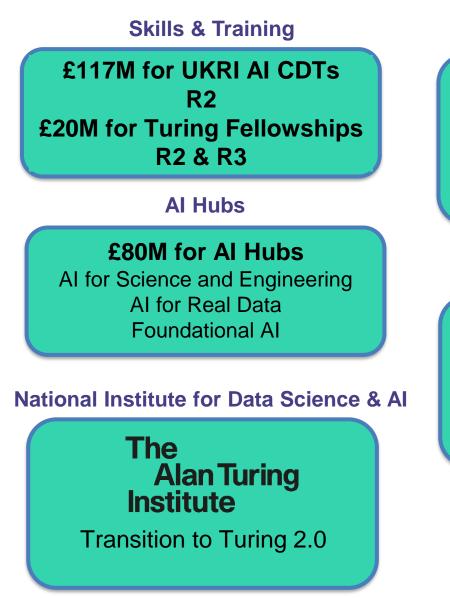
Security, Privacy, Identity and Trust Engagement network plus (SPRITE+)

Future of the Internet community engagement and research programme

Digital Forensics part of the UKRI Forensics Sandpit

Developing the cybersecurity research ecosystem

A community building activity to be awarded in 2024


A **key objective** of the UK Cyber Strategy: Strengthen the structures, partnerships and networks necessary to support a whole-of-society approach to cyber By getting the right people working together in the right ways across the whole **public sector, industry and academia**, pulling together the whole cyber community.

Through the initiative, EPSRC intends to support national priorities while achieving long-term stewardship of the research ecosystem by:

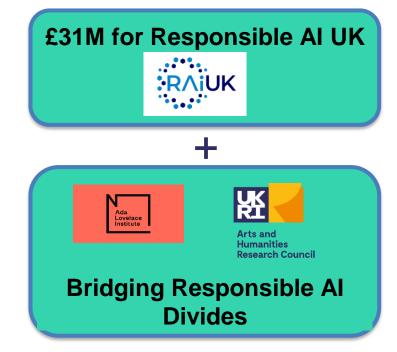
- Providing and improving connectivity between components of the UK cybersecurity research ecosystem
- Promoting knowledge exchange between academia, industry, and government
- Informing our EPSRC's future investment strategy and our dialogue with government
- **Providing an international perspective** to enable targeted collaboration with international partners, as well as benchmarking and horizon scanning to inform prioritisation of challenges
- **Promoting regional strengths**, for example via interaction with relevant regional groups such as the UK Cyber Clusters

Summary: Investments into the AI Ecosystem

AI for Research Challenges

£13M for AI for Health

£13M for AI for Net Zero


Al Innovation Programme

Underpinning infrastructure

Enabling a Responsible AI Ecosystem

Plus additional cross-cutting programmes, and BAU activities.

Workshop on Artificial Intelligence and Security

The University of Manchester

Security for all in an Al enabled society*

Lucas Cordeiro¹ and Mustafa Mustafa^{1,2}

¹Department of Computer Science, The University of Manchester ²imec-COSIC, KU Leuven, Belgium

*Engineering and Physical Sciences Research Council (EPSRC) The Digital Economy Theme (part of UKRI) <u>https://enncore.github.io/events/secaiws/</u>

Objectives

Discuss recent achievements and future initiatives to build trustworthy AI systems by taking an applied and interdisciplinary approach

- Establish new partnerships/collaborations to
 - discuss the challenges at the intersection between AI and cybersecurity: security for AI and AI for security
 - tackle our main obstacles to achieving widespread adoption of trusted and secure Al systems
 - create a portfolio of adventurous flagship projects to demonstrate the viability of different research approaches

Funded EPSRC Research Projects

The Digital Economy Theme, part of UKRI, committed £7,025,040 (at 80% FEC) to support four research projects involving eleven UK universities, addressing challenges at the intersection between artificial intelligence and cyber security

- Security for Artificial Intelligence
 - Securing Int. Systems across their lifecycle
 - Understanding of attacks and defenses
 - Detection of Degradation of Behaviour
 - Data Supply Chains
 - \circ Explainable AI

- Artificial Intelligence for Security
 - Analysing and Utilising Outputs
 - $_{\odot}$ AI and Human Interaction
 - \circ Novel Approaches
 - The AI Security Tool Lifecycle

Funded EPSRC Research Projects

CHAI: Cyber Hygiene in AI enabled domestic life

 \circ Queen Mary University of London

University of Bristol

 $\ensuremath{\circ}$ University of Greenwich

 $\ensuremath{\circ}$ University of Reading

CHAI: Cyber Hygiene in AI enabled domestic life

• Cyber security has traditionally benefitted from the user's alertness and simple recommendations to minimise exposure to cyber risk. This is not true for AI-enabled life

CHAI explores how to:

```
Make AI easier for the user to understand when things go wrong
```

Developed testbed (smart heating application for home) with simple AI (schedule learning) and explainability/transparency capabilities

Bristol

Greenwich

Developed impact graph-based diagnostic approach for non-experts

Train the user to better protect themselves
against malicious Al

Univ. of Reading

Determining what factors influence personal preparedness against AI threats

Queen Mary

Determining optimal cyber hygiene measures based on AI attack graphs

Developed and conducted training experiment with 10 households UCL

Funded EPSRC Research Projects

CHAI: Cyber Hygiene in AI enabled domestic life

 $_{\odot}$ Queen Mary University of London

University of Bristol

 $\ensuremath{\circ}$ University of Greenwich

 $\ensuremath{\circ}$ University of Reading

SAIS: Secure AI assistantS

o Kings College Londono Imperial College London

SAIS: Secure AI assistantS

- Al assistants (e.g., Alexa, Siri...) are widely deployed and used (7M daily users in the UK)
- Despite this, concerns persist concerning security, transparency, and privacy
- Goal: propose methods to specify, formally verify and monitor the security behaviour of AI assistants
- Cross-disciplinary collaboration between KCL and ICL, with non-academic parners

Funded EPSRC Research Projects

CHAI: Cyber Hygiene in AI enabled domestic life

Queen Mary University of London

 \circ University of Bristol

 $\ensuremath{\circ}$ University of Greenwich

 $\ensuremath{\circ}$ University of Reading

SAIS: Secure AI assistantS

o Kings College London
 o Imperial College London

AISEC: AI Secure and Explainable by Construction

Heriot-Watt University
University of Strathclyde
University of Edinburgh

AISEC: AI Secure and Explainable by Construction

- Investigate neural network verification to ensure the safety and security of complex intelligent systems
- Design a tool Vehicle (poster session) that:
 - o provides a **user-friendly language** for reasoning about properties of neural networks
 - o leverages the power of existing advanced neural network verifiers
 - o integrates **property-driven training** into neural network verification
 - enables integration of neural network verification into the verification of complex systems with neural network components
- Investigate applications: NLP (including LLMs) (talk today), autonomous systems, neural networks in security applications (Luca Arnaboldi)

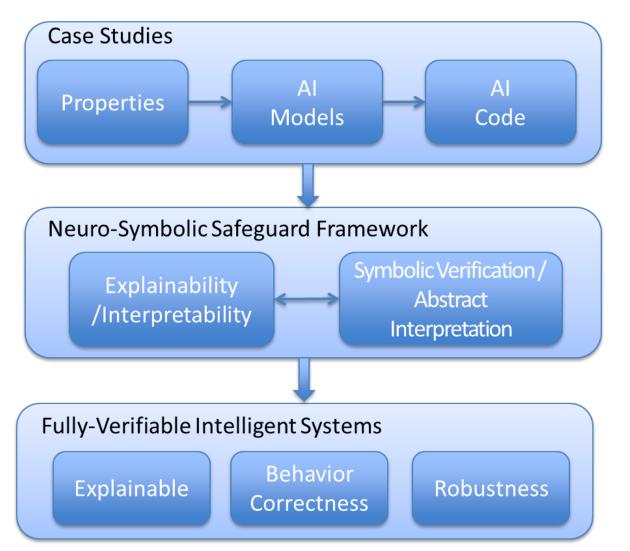
Funded EPSRC Research Projects

CHAI: Cyber Hygiene in AI enabled domestic life

- Queen Mary University of London
- University of Bristol
- o University of Greenwich
- University of Reading

SAIS: Secure Al assistantS

o Kings College London
 o Imperial College London


AISEC: AI Secure and Explainable by Construction

- Heriot-Watt University
 University of Strathclyde
- \circ University of Edinburgh

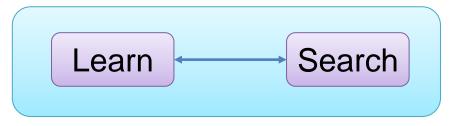
EnnCore: End-to-End Conceptual Guarding of Neural Architectures

- \circ University of Manchester
- University of Liverpool

EnnCore: End-to-End Conceptual Guarding of Neural Architectures

- Creation of the evaluation benchmarks
- Use case deployment & usability study
- Develop neural interpretability methods
- Reason over security properties in AI model/code

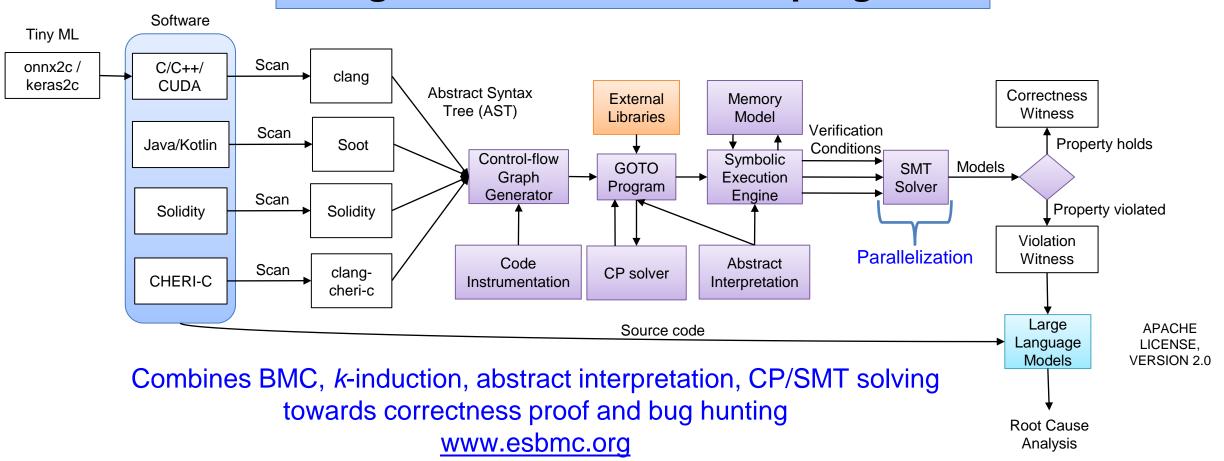
- Evaluation of security properties in real case studies from health and energy
- Validation of the results

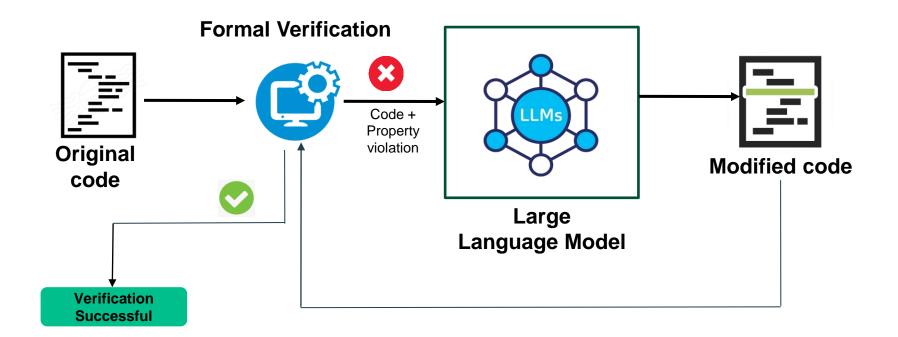

Program

Timing	Talk		
12:30 - 13:00	Arrival, sandwiches, and coffee (Mercury room)		
13:00 - 13:30	Welcome and introduction by Lucas Cordeiro, Stephanie Williams (EPSRC UKRI), Mustafa Mustafa (LT1.4)		
13:30 - 14:30	Evaluating Privacy in Machine Learning (by Andrew Paverd) (LT1.4)		
14:30 - 14:45	Coffee break (Mercury room)		
14:45 - 15:15	A Tale of Two Oracles: Defining and Verifying when AI Systems are Safe (by Edoardo Manino) (LT1.4)		
15:40 - 15:55	Coffee break (Mercury room)		
15:15 - 15:45	One Picture Paints a Thousand Words: Using Abstract Interpretation for NLP Verification (by Marco Casadio) (LT1		
15:45 - 16:00	Coffee break (Mercury room)		
16:00 - 16:30	Efficiently Training Neural Networks for Verifiability (by Alessandro De Palma) (LT1.4)		
16:30 - 17:00	Cyber Hygiene in Al-enabled domestic life (by George Loukas) (LT1.4)		
17:00 - 18:00	Drinks reception (Mercury room)		
18:00 - 18:30	Free time		
18:45 - 21:00	Dinner at Bem Brasil Deansgate (44 King St W, Manchester M3 2GQ)		

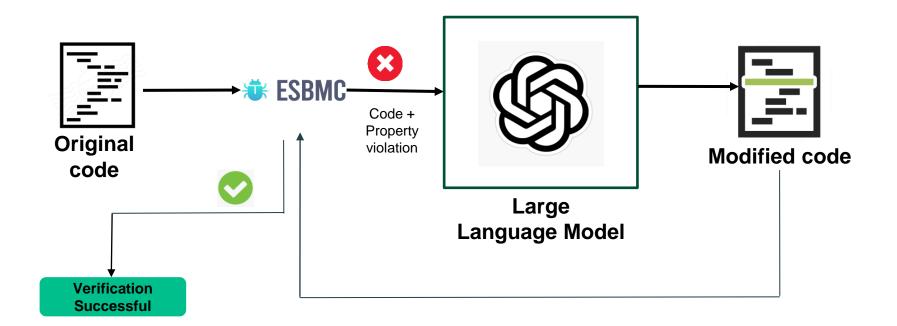
The Bitter Lesson by Rich Sutton March 13, 2019

"The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large margin. The ultimate reason for this is Moore's law, or rather its generalization of continued exponentially falling cost per unit of computation"


Parallelization


"The two methods that seem to scale arbitrarily in this way are *search* and *learning*"

ESBMC: Software Verification Platform


Logic-based automated reasoning for checking the safety and security of single- and multi-threaded programs

Towards Self-Healing Software: LLM + Formal Verification

Towards Self-Healing Software: LLM + Formal Verification

Experimental Evaluation

Set-up

Code Generation

- Processor: AMD Ryzen
 Threadripper PRO 3995WX
- Cores: 16
- RAM: 256 GB

Code Repair

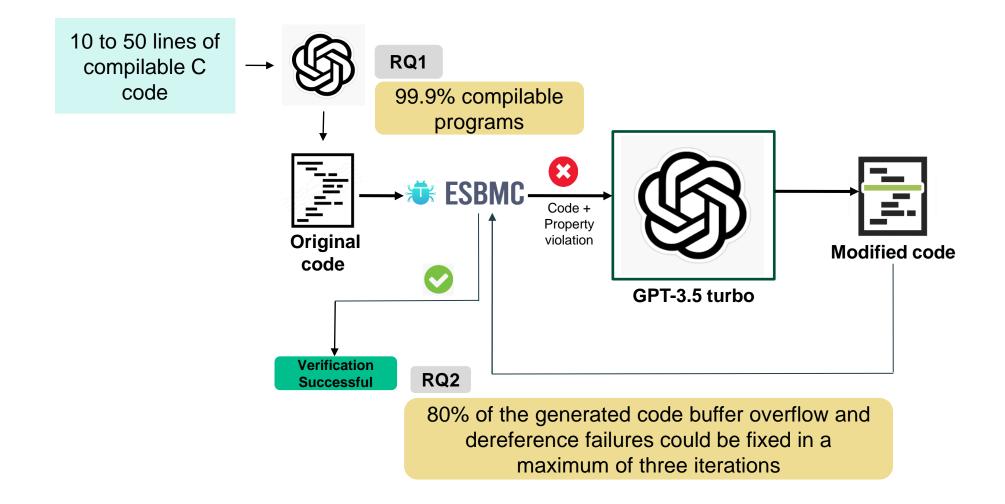
- Model: MacBook Pro (2017)
- RAM: 16 GB RAM of LPDDR3 RAM (2133 MHz)
- Processor: 2.5 GHz Intel Core i7-7660U

Generate 1000 programs with GPT-3.5 turbo with the following prompt

Benchmarks

Code generation prompt

Generate a minimum of 10 and a maximum of 50 lines of C code. Use at least two functions. Use strings, arrays, bit manipulations, and string manipulations inside the code. Be creative! Always include every necessary header. Only give me the code without any explanation. No comment in the code.


Objectives

To answer the following research questions.

RQ1: (Code generation) Are the stateof-the-art GPT models capable of producing compilable, semantically correct programs?

RQ2: (Code repair) Can external feedback improve the bug detection and patching ability of the GPT models?

Evaluation: Towards Self-Healing Software: LLM + Formal Verification

Technical Report, Dataset, and Soure Code

FORMAI DATASET: A LARGE COLLECTION OF AI-GENERATED C PROGRAMS AND THEIR VULNERABILITY CLASSIFICATIONS

Network Management, Table Games, Wi-Fi Signal Strength Analyzer, QR code reader, Image Steganography, Pixel Art Generator, Scientific Calculator Implementation, and Encryption, string manipulation, etc.

Dataset: <u>https://ieee-dataport.org/documents/formai-dataset-large-collection-ai-generated-c-programs-and-their-vulnerability</u>

Technical report: https://arxiv.org/abs/2305.14752

Source code: https://github.com/Yiannis128/esbmc-ai

A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification

YIANNIS CHARALAMBOUS*, NORBERT TIHANYI[†], RIDHI JAIN[†], YOUCHENG SUN*, MOHAMED AMINE FERRAG[†], LUCAS C. CORDEIRO^{*}, *The University of Manchester, UK and [†]Technology Innovation Institute, UAE

In this paper, we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.

CCS Concepts: \bullet Software and its engineering \rightarrow Software verification and validation.

Additional Key Words and Phrases: Large Language Models, Generative Pre-trained Transformers, Formal Verification, Fault Localization, and Program Repair

ACM Reference Format:

Yiannis Charalambous*, Norbert Tihanyi[†], Ridhi Jain[†], Youcheng Sun*,, Mohamed Amine Ferrag[†], Lucas C. Cordeiro*. 2023. A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification. 1, 1 (June 2023), 23 pages. https://doi.org/10.1145/nnnnnnnnnnn

Systems and Software Security Research Group

L. Cordeiro

R. Banach

M. Mustafa

N. Zhang

B. Magri

Y. Sun

D. Dresner

her A. Creswell

Centre for Digital Trust and Society

- A focal point for research across the University of Manchester that explores aspects of trust and security in our digital world
- USP -> Social science led cyber/digital security research agenda
- People
 - Director: Prof Nicholas Lord
 - Academic lead for Cyber Security: Prof Daniel Dresner
 - Lead for Early Career Researchers: Dr David Buil-Gil
- The centre constitutes of six clusters (more on the next slide)

Research clusters

	Project	Funder	Value (£K)
	Soteria: Digital Security by Design	UKRI	£5800
	i-Minds Digital Intervention for young people who have experienced online abuse	NIHR	£850
±	SPRITE+ (Security, Privacy, Identity, Trust NetworkPlus) (Combined Phase 1 2019-2023; Phase 2, 2023 to 2027)	UKRI	£4650
ts	NW Partnership for Security and Trust	GCHQ	£760
	National Centre for Research Methods (2020-24)	ESRC	£4250
	VR and online child sexual exploitation	GCHQ	£32
ling since 2018:	Linguistic analysis of communications in online child sexual exploitation	UKRI	£30
	ProvAnon (data anonymisation and provenance)	ATI	£71*
	Manchester Digital Innovation and Security Hub	MCC	£200
nge of projects,	CyberFoundry (project led from MMU)	ERDF	£1220*
cluster	PrivIoT: Understanding and mitigating privacy risks of IoT homes with demand-side management	PETRAS	£30*
	Explainable AI for Digital Forensics Testing	UKRI	£120
ed corn to multi-	Heilbronn Institute for Mathematical Research – North Note: funding confidential	GCHQ	(see note)
ound funding	Developing Critical Mass in Cybersecurity	UKRI	£65
	EnnCore (End-to-End Conceptual Guarding of Neural Architectures)	UKRI	£1720
	Infodemic: Combatting COVID-19 Conspiracy Theories	UKRI	£278
esearchers across all	The Intended and Unintended Consequences of Data-Driven Campaigning	NORFACE	£250
ages	Digital Campaigning, Elections and Democracy	ERC	£2126
U	ELEGANT (Secure and Seamless Edge-to-cloud Analytics)	Horizon 2020	£508*
	Digital Information Literacy: A Programme for Schools	ASPECT	£50
th other DF themes	ScorCH (Secure Code for Capability Hardware)	ISCF via UKRI	£800K*
	UKRI Impact Acceleration Account 373 EPSRC with SES Secure Ltd	UKRI	£86
	Google ASPIRE Fund 2021 Program: Formal Verification Driven Fuzzing of Trusty OS	Google ASPIRE	£103 (US\$118)
	Manchester Turing Innovation Hub	Innovate UK	£4334
	Total		£28333

Project

- External fundi
 - Wide rang often >1 c
 - From seed million po
 - Led by res career sta
 - Some with